

Introduction to Pleiades

Johnny Chang
NAS Division
NASA Ames Research Center

2012 Summer Short Course for Earth System Modeling and Supercomputing

Outline

- > Computing resources available at NAS
- Logging in to Pleiades
- > Transferring files to/from Pleiades
- > Setting up your module environment
- Compiling your code
- Running jobs with PBS
- Working with PBS
- Lustre Best Practices

NAS Systems

Pleiades: 11,776-node Intel Xeon cluster processor family: x86_64

4096 Harpertown nodes:
 8 cores and 8GB per node

1280 Nehalem nodes: 8 cores and 24GB per node

4672 Westmere nodes:
 12 cores and 24GB per node

1728 Sandy Bridge nodes: 16 cores and 32GB per node

Columbia: 4 large Single-System-Image systems processor family: ia64

Columbia21: 512 CPUs and 1 TB memory

Columbia22: 2048 CPUs and 4 TB memory

Columbia[23,24]: 1024 CPUs and 2 TB memory each

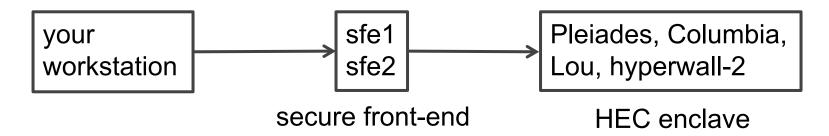
Lou: 14 PB mass storage system processor family: ia64

Pleiades front-ends

pfe1, pfe2, ..., pfe12

- Harpertown nodes: 8 cores,16 GB/node, 1GigE network
- Used for logging in, and interactive work: editing, compiling, submitting jobs, etc.

bridge1, bridge2


- Harpertown nodes: 8 cores, 64 GB/node, 10 GigE network
- Larger memory for pre- or post-processing, viewing graphics (matlab, tecplot, idl, etc.)
- Better network for transferring large files (especially to Lou)

bridge3, bridge4

- Nehalem-EX nodes: 32 cores, 256 GB/node, 10 GigE network
- Newer, larger bridge nodes

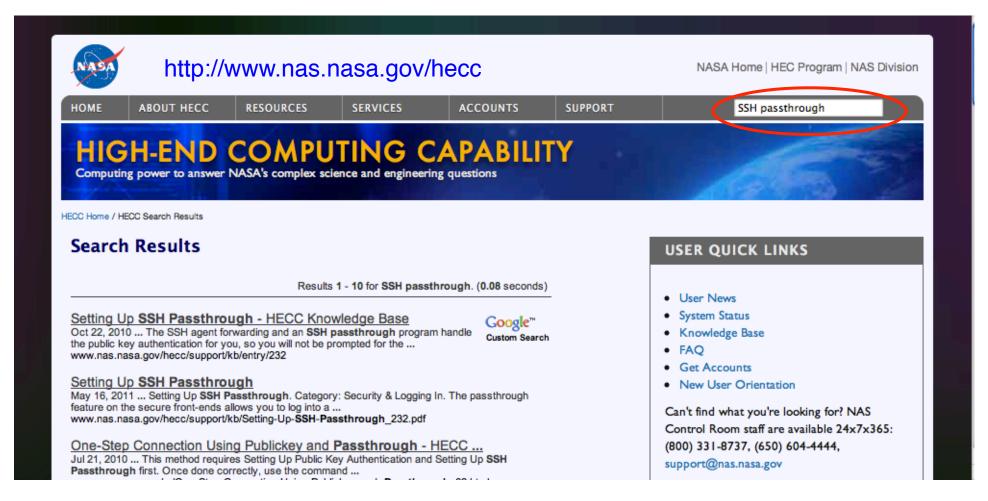
Logging in to NAS systems

Two-step connection method: Easy, but not recommended

First, from your wks, login to the secure front-end

 Second, from sfe1 (or sfe2), login to Pleiades front-end, pfe sfe1% ssh pfe This step requires password

Logging in to NAS systems



One-step connection method: preferred method

your_wks% ssh pfe

Enter 8-char pin + passcode from fob

This requires setting up SSH Passthrough ("pass through" because no direct login to sfe1 or sfe2)

Setting up SSH Passthrough

1. On your workstation:

- ssh-keygen -t rsa (choose a passphrase, this command will generate two files: id_rsa and id_rsa.pub)
- Copy public key to sfe1 (and/or sfe2)
 scp id_rsa.pub username@sfe1.nas.nasa.gov:~/.ssh2

2. On sfe1 (and/or sfe2):

- echo "Key id_rsa.pub" > ~/.ssh2/authorization
- Copy public key to pfe and lou

3. On pfe and lou:

mv id_rsa.pub ~/.ssh/authorized_keys

4. On your workstation:

- Download the config file from hecc webpage on SSH Passthrough, edit and enter your username, and save the config file under your ~/.ssh directory
- Start ssh-agenteval `ssh-agent`ssh-add (type your passphrase when prompted)

File Systems

\$HOME file system is NFS

- disk quota: 8GB soft and 10GB hard limit
- 14 days grace period over soft quota
- files backed up everyday
- check quota with: quota -v

> Scratch directory: /nobackup/userid is a Lustre file system

- disk quota: 500GB soft and 1TB hard limit
- inode quota: 75000 soft and 100000 hard limit
- 14 days grace period over soft quota
- files and directories are never backed up
- check quota with: Ifs quota -u userid /nobackupp[1-6] (use your nobackupp number)

Transferring files to/from NAS systems

Easy if SSH passthrough is already set up

Examples:

wks% scp file1 pfe: transfer file1 to pfe

wks% scp file1 pfe:file2 transfer and rename to file2 on pfe

wks% scp file1 pfe:dir1 transfer to dir1 on pfe

wks% scp -r dir1 pfe: recursively copy dir1 and its contents to pfe

wks% scp pfe:path_to/file1.
 transfer file1 from pfe to your workstation

Only requires pin + passcode
Use Secure Unattended Proxy

Use Secure Unattended Proxy to avoid pin+passcode

More cumbersome if SSH passthrough is not set up

- Need to transfer twice, either through sfe[1,2] (not recommended, limited disk space) or through dmzfs[1,2]
- File transfer cannot be initiated from dmzfs1/dmzfs2 because of their "jailed" environments (limited Unix commands and non-functional ssh or scp commands).
 Files can be "pushed" into or "pulled" out of dmzfs[1,2]
- Files are automatically deleted from dmzfs[1,2] after 24 hours

Setting up module environment

New account created with no default compilers (except for GNU compilers)

module avail shows all 172+ modules available (36 compilers, 22 MPI libraries, 12 HDF5 libraries, etc.)

Recommend adding the following to the end of your .login file:

module load comp-intel/2012.0.032 mpi-sgi/mpt.2.06a67 (don't load MKL modules, it's already included in v.11 or later Intel compiler modules)

Default shell is csh (same as tcsh)

Contact control-room if you want a different default shell

Useful module commands:

- module list (list currently loaded modules)
- module purge (unloads all currently loaded modules)
- module switch current_module new_module
- module show some_module (shows how your environment variables, PATH, FPATH, LD_LIBRARY_PATH, etc. are changed by loading the module)
- module help some_module (info on how some_module was built)

Compiling and Building your code

Intel compilers: ifort - Fortran compiler

icc - C compiler

icpc - C++ compiler

Compiler options:

aggressive optimization: -O3 -ip

maintain precision: -fp-model precise (lowers optimization)

large arrays > 2GB: -mcmodel=medium

-shared-intel (needed at link step)

debugging: -g -traceback -fpe0 -check

Linking:

MKL math library: -mkl=sequential

SGI's MPI library: -Impi

Example:

ifort -c -O3 -ip file1.f90

ifort -c -O3 -ip file2.f90

ifort -o my_exec file1.o file2.o -lmpi

Running jobs with PBS

Sample PBS script (run.scr):

```
#PBS -I select=16:ncpus=8:model=har
#PBS -I walltime=1:00:00
#PBS -i oe
cd $PBS O WORKDIR
mpiexec -np 128 ./my_exec > output
% qsub run.scr (submit PBS job)
227697.pbspl1.nas.nasa.gov
qstat -au jsmith
qstat -su jsmith
```

(shows all jobs running or queued by user jsmith)

(gives a one line explanation for status of jsmith's jobs)

qstat -nu jsmith (shows nodes used by jsmith's running jobs)

qstat -r (shows all running jobs)

qstat -i (shows all queued jobs sorted by priority)

gdel 227697 (delete job 227697)

Running jobs with PBS (continued)

- 'devel' queue for faster turnaround (Westmere and Sandy Bridge nodes only)
 - Each user can run only one job at a time in the devel queue for up to 2 hours
 - Submit jobs with: qsub -q devel@pbspl3 run.scr 12709.pbspl3.nas.nasa.gov
 - qstat -r devel@pbspl3 (shows all running jobs in the devel queue)
 - qstat -i @pbspl3 (shows all queued jobs served by pbspl3)
- Interactive PBS jobs (qsub -I)
 - qsub -I -lselect=4:ncpus=12:model=wes,walltime=5:00:00
 - qsub -I -q devel@pbspl3 -lselect=4:ncpus=12:model=wes,walltime=2:00:00
 - qsub -I -v DISPLAY -lselect=4:ncpus=8:model=neh
 qsub: waiting for job 227786.pbspl1.nas.nasa.gov to start
 (Ctrl-c if you don't want to wait)
 - Default is 1 hour if you don't specify walltime
 - More predictable start time running interactive PBS job in devel queue

Lustre Best Practices

Pleiades scratch directory, /nobackup/jsmith, is a Lustre filesystem

/nobackup/jsmith is a symlink to the actual directory: pfeX% Is -I /nobackup/jsmith Irwxrwxrwx 1 root root 18 Jul 15 16:53 /nobackup/jsmith -> /nobackupp1/jsmith/

Checking quotas on Lustre

% Ifs quota -u jsmith /nobackupp1

Disk quotas for user jsmith (uid xxxx):

Filesystem kbytes quota limit grace files quota limit grace /nobackupp1 97757456 210000000 420000000 - 42573 75000 100000

File striping (necessary if file is greater than 1GB or read by many procs)

Ifs setstripe -c 16 -s 4m bigfile (Sets stripe count of 4 and stripe size of 4MB for bigfile;

must be done before bigfile is created)

Ifs gestripe bigfile (get information on file striping for bigfile)

Ifs setstripe -c 16 -s 4m bigdir (sets striping for directory bigdir; all new files created under

bigdir will retain the file striping characteristics of bigdir)

Default file striping is -c 1 -s 4m

Avoid repetitive or continuous file stats by adding sleep

For example, if checking for the presence of file "GO," instead of:

while (! -e GO)

end

use

while(! -e GO)

sleep 2

end

For more on Lustre Best Practices, go to http://www.nas.nasa.gov/hecc and search for Lustre. Start with "Lustre Basics."